Macro-microscopy and TLC atlas of leaves of Costus igneus Nak.

Prakash L Hegde¹, Harini A², KN Sunil Kumar³, Prasanna N Rao⁴

¹Professor, ²Associate Professor, Department of Dravyaguna, Sri Dharmasthala Manjunatheshwara College of Ayurveda & Hospital, Hassan, Karnataka, 573201, India. ³Senior Research Officer, Department of Pharmacognosy, SDM Center for Research in Ayurveda and Allied Sciences, Udupi, Karnataka 574118, India. ⁴Principal and Professor, Department of Shalya tantra, Sri Dharmasthala Manjunatheshwara College of Ayurveda, Hassan, Karnataka, 573201, India.

Correspondence: Email: harini013@yahoo.co.in, Mobile: +919886427831

ABSTRACT

Introduction: Costus igneus Nak., commonly known as Spiral flag, is a member of Costaceae and a newly introduced plant in India from South and Central America. In southern India, it usually is grown as an ornamental plant and its leaves are used as a dietary supplement in the treatment of diabetes mellitus. Recently, a number of researches have been carried out and it has been proven to possess various pharmacological activities like antidiabetic, hypolipidemic, diuretic, antioxidant, anti-microbial and anti-cancer. Methods: Macro-microscopy and TLC investigation for the leaves of C. igneus were done using standard methodology. Results: The chief microscopic characters of leaves include epidermis with anomocytic stomata, mesophyll cells with calcium oxalate crystals and fibres associated with parenchyma cells. TLC of ethanolic extract showed 7 and 12 spots at short UV nm and long UV respectively. Conclusion: This study will serve as a standard reference for identification of Costus igneus Nak. leaf.

KEYWORDS

Costus igneus Nak, HPTLC, Insulin plant, Pharmacognosy, Quality control, Standardisation

Received: 17.09.2016 Accepted: 10.10.2016 DOI: 10.5530/jams.2016.1.3

Costus igneus Nak (syn. Costus pictus D. Don, Costus mexicanus Liebm ex Petersen or Costus congenitus Rowle), commonly known as fiery costus, Step ladder or Spiral flag or Insulin plant, is native to South and Central America. It is a recent introduction to India from America as an herbal cure for diabetes and hence commonly called as ‘insulin plant.’ It is widely grown in gardens as ornamental plant in South India and also run wild in many places. It is used in India to control diabetes, and it is known that diabetic people eat one leaf daily to keep their blood glucose low. Leaves of C. igneus were one among the plants known to be effectively used for treating diabetes by the tribal people of Kolli hills of Namakkal district, Tamilnadu. In Mexican folk medicine, the aerial part of C. pictus D. Don is used as an infusion in the treatment of renal disorders. It is a perennial, upright, spreading plant reaching about two feet tall, with the tallest stems falling over and lying on the ground. Leaves are simple, alternate, entire, oblong, evergreen, 4-8 inches in length with parallel venation. The large, smooth, dark green leaves of this tropical evergreen have light purple undersides and are spirally arranged around stems, forming attractive, arching clumps arising from underground rootstocks. Beautiful, 1.5-inch diameter, orange flowers are produced in the warm months, appearing on cone-like heads at the tips of branches. The plant is a rich source of various phytochemicals viz., the leaves are reported to contain protein, iron, ascorbic acid, α-tocopherol, β-carotene, terpinoids, steroids, and flavonoids. The essential oil obtained by steam distillation of leaves revealed the presence of 6 phyto constituents. Recent researches on the pharmacological activities of the leaves of C.igneus Nak reveals its potential as a antidiabetic, hypolipidemic, diuretic, antioxidant, ameliorative, antimicrobial, anticancer and putative agent. The present study was planned to study the detail macroscopic, microscopic and chromatographic characteristics of the leaves of C.igneus Nak which would serve as a reference standard for identification, authentication and for distinguishing the plant from potential adulterants.

MATERIALS AND METHODS

Plant Material

The fresh leaves of C. igneus Nak was collected from the herbal garden of Sri Dharmasthala Manjunatheshwara College of Ayurveda & hospital, Hassan. The authentication was done at S.D.M Research Center for Ayurveda and Allied Sciences, Udupi and a voucher specimen maintained in the same laboratory. The collected leaves were shade dried and finally pulverized into coarse powder. It was stored in a well closed container free from environmental climatic changes or any other contamination till usage for further studies.

Macroscopy

Macroscopic features of the leaves of C.igneus Nak were observed under Stereo microscope (Zeiss Stemi) and the characters recorded with reference to leaf characters reported in literature.
Microscopy
Transverse section of the leaf through midrib and lamina was taken and observed for their characteristic features.[10]

Powder characteristics
Minimum quantity of leaf powder was mounted on a microscopic slide, stained with safranin, characters were observed under trinocular microscope (Zeiss AXI).[11]

High Performance Thin Layer Chromatography
Extract preparation
1 g of the sample was soaked in 20 ml ethanol for 24 hours. The extract was filtered and made upto 20 ml with ethanol. 10, 20 and 30 µl of the above extract was applied on a precoated silica gel F254 on aluminum plates to a band width of 8 mm using Linomat 5 TLC applicator. The plate was developed in Toluene : Ethyl acetate (7 : 2) and the developed plates were visualized and scanned under UV 254, 366, and after derivatisation in vanillin-sulphuric acid spray reagent at 620 nm.[12] Rf, colour of the spots, densitometric scan and superimposability of densitogram were recorded.[13-14]

RESULTS AND DISCUSSION
Macroscopy
The leaves were simple, alternate, entire, oblong, smooth, parallel venation and spirally arranged around stem (Figure 1.1).

Microscopy
Transverse section of leaf shows upper and lower epidermii embedding wide mesophyll tissue consisting of parenchyma embedding continuous strands of fibre vascular bundles. The mesophyll tissue is majorly composed of large parenchyma cells. Cells of the upper epidermis are comparatively smaller than the lower epidermal cells. Lower epidermis is embedded with stomata and the epidermal cells are often beaded. The vascular bundles are embedded in continuous strands of chlorenchyma, cell of which are either elongated or spherical, and the vascular bundles are comprised of large vessels in the centre, surrounded by phloem tissue. The bundles are fibrous and the parenchymas adjacent to them are loaded with rosette crystals of calcium oxalate. Fibres are thin-walled, forming two arc-like patches protecting the vascular tissue from either side. The extra vascular bundles in the mid-rib has ‘U’ shaped fibrous sheath in the lower side. TS through the lamina show similar anatomy without extra-vascular bundles (Figure 1.2, 1.3 and 2)

Powder microscopy
The powder shows fragments of upper epidermis composed of polygonal cells without stomata, often with underlying large mesophyll cells; fragments of lower epidermis with anomocytic stomata and beaded walls; fragments of mesophyll region with cells embedding chloroplasts and plenty of druses of calcium oxalate; bundles of thin-walled fibres associated with parenchyma containing druses forming crystal fibres; fragments or entire vessels with spiral thickening; few fibres isolated and pittedly walled, often associated with parenchyma containing druses often associated with phloem elements; druses and sandy crystals are scattered throughout the powder (Figure 3).

Figure 1. Macro-microscopic features of leaf of Costus igneus Nak
1.2. Detailed TS of leaf passing through midrib

1.3. Detailed TS of leaf passing through lamina

Table 1. Rf values of ethanolic extract of *Costus igneus*

<table>
<thead>
<tr>
<th>Short UV</th>
<th>Long UV</th>
<th>After derivatisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06 L Green</td>
<td>--</td>
<td>0.10 Blue</td>
</tr>
<tr>
<td>--</td>
<td>0.11 FL Pink</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>0.14 FL Pink</td>
<td>--</td>
</tr>
<tr>
<td>0.21 L Green</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>0.23 FL Pink</td>
<td>--</td>
</tr>
<tr>
<td>0.25 L Green</td>
<td>--</td>
<td>0.27 Blue</td>
</tr>
<tr>
<td>--</td>
<td>0.30 FL Pink</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>0.40 F Pink</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>0.41 Blue</td>
</tr>
<tr>
<td>--</td>
<td>0.42 F Pink</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>0.51 Blue</td>
</tr>
<tr>
<td>--</td>
<td>0.54 FL Pink</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>0.62 Blue</td>
</tr>
<tr>
<td>0.66 F Blue</td>
<td>0.67 Blue</td>
<td>--</td>
</tr>
<tr>
<td>0.71 L Green</td>
<td>0.71 F Pink</td>
<td>--</td>
</tr>
<tr>
<td>0.76 L Green</td>
<td>0.76 F Pink</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>0.83 F Pink</td>
<td>--</td>
</tr>
<tr>
<td>0.87 Green</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>0.90 Pink</td>
</tr>
<tr>
<td>0.98 L Green</td>
<td>0.98 FL Yellow</td>
<td>--</td>
</tr>
</tbody>
</table>

F: Fluorescent; L: Light
Figure 2. Detailed microscopic features of leaf of *Costus igneus* Nak

![Microscopic features of leaf](image)

TS through lamina showing mesophyll

A vascular bundle enlarged

Stoma in lower epidermis

Rosette crystals of calcium oxalate

Crystal idioblasts with fibres

Fibro vascular bundle

HPTLC

Thin layer chromatography of ethanolic extract of *Costus igneus* Nak leaves showed presence of various compounds as represented in photo-documentation and densitometric scan at various wavelengths (Figure 4). Photo-documentation of 30 µl ethanolic extract under short UV showed 7 spots with Rf values 0.06, 0.21, 0.25, 0.71, 0.76, 0.87, 0.98. Under long UV, 12 spots were visible with Rf values 0.11, 0.14, 0.23, 0.30, 0.40, 0.42, 0.54, 0.66, 0.71, 0.76, 0.83, 0.98. Under white light after derivatisation with vanillin sulphuric acid, 7 spots with Rf values 0.10, 0.27, 0.41, 0.51, 0.62, 0.67, 0.90 were visualized (Table 1.)

The major problem faced in herbal formulation industry is the identification of authenticated raw material, the absence of which leads to adulteration. The detailed systematic pharmacognostic evaluation of plant and plant material provides means of
standardization of an herb.[15] The morphological studies reported herein established the macroscopic and microscopic parameters that characterize the genuine plant drug \textit{Costus igneus} Nak (Family: Costaceae). These morphological characters can be utilized for quick identification of the drug. The microscopical characteristics are particularly useful in case of powdered drug. HPTLC fingerprinting for various phytoconstituents in the extract serve as specific tool to differentiate various extracts from raw material of different species of herbs.[16] The results obtained from HPTLC may serve as identification for \textit{Costus igneus} Nak leaves.

Figure 3. Microscopic features of macerate of leaf of \textit{Costus igneus} Nak
CONCLUSION
The microscopic and chromatographic fingerprinting can be used to judge the adulteration and purity of the drug. The plant *Costus igneus* Nak exhibits a set of diagnostic characteristics like epidermis with anomocytic stomata, calcium oxalate crystals which will help for identification. HPTLC fingerprinting will help to supplement information in regard to its identification and standardization.

Figure 4. HPTLC of ethanolic extract of leaf of *Costus igneus* Nak

Under short UV
Under long UV
Under white light after derivatisation

Track 1- Ethanolic Extract 10 µl; Track 2- 20 µl; Track 3- 30 µl

Densitometric scan at 254 nm
Densitometric scan at 366 nm
Densitometric scan at 620 nm after derivatisation

Solvent system - Toluene : Ethyl acetate (7:2)

ACKNOWLEDGMENTS
Authors acknowledge Rajiv Gandhi University of Health Sciences, Karnataka for the financial assistance. The authors are thankful to S D M Center for Research in Ayurveda and allied sciences, Udupi for providing facilities for the study.
REFERENCE

ABOUT FIRST/CORRESPONDING AUTHOR/S

Dr. Prakash L. Hegde obtained his PhD from Dr Sarvepalli Radhakrishnan Rajasthan Ayurveda University, Jodhpur in 2010. He has published a book entitled “Textbook of Dravyaguna (Ayurvedic Clinical Pharmacology)”. He is a practicing Ayurvedic physician and specializes in Ayurvedic management of Diabetes mellitus. Dr. Hegde is presently serving as Professor in Sri Dharmasthala Manjunatheshwara College of Ayurveda & Hospital, Hassan, India.

Dr. Harini A is a practicing Ayurvedic physician and is presently positioned as Associate professor in Sri Dharmasthala Manjunatheshwara College of Ayurveda & Hospital, Hassan, India. She is coauthor of a book entitled “Textbook of Dravyaguna (Ayurvedic Clinical Pharmacology)”

GRAPHICAL ABSTRACT

©Journal of Ayurveda Medical Sciences

- Herbal Research Guidance and Solutions' (HRGS) Ayurveda Journal

11