HPTLC and 1H-NMR as Fingerprints to Spot Ingredients of a Polyherbal Medicine Bhunimbadi Kvatha Churna

Sunil Kumar KN1,2*, Priyadarshini3, Ravishankar B4

1,2,3,4SDM Centre for Research in Ayurveda and Allied Sciences, Laxminarayana Nagar, Kathpadi, Udupi, India – 574 118. 2Current: Siddha Central Research Institute, Anna Hospital Campus, Arumbakkam, Chennai 600106

*Correspondence: E-mail: sunilkumarnarayanan@gmail.com, Mobile: +917406111071

ABSTRACT

Introduction: Bhūnimbādi Kvātha Cūr (BKC) is a polyherbal medicine formulated from eight ingredients viz. plant of *Svertia chirata* Buch. Ham., root of *Aconitum heterophyllum* Wall. ex. Royle, stem bark of *Symlocos racemosa* Roxb., rhizome of *Cyperus rotundus* Linn., seed of *Holarrhena antidysenterica* Wall., root of *Coleus vettiveroides*. K. C. Jacob, fruit of *Coriandrum sativum* Linn. and fruit pulp of *Aegle marmelos* Corr. It is used for the treatment of asthma, cough, fever due to pitta dosha, and bleeding disorders according to Ayurvedic Formulary of India. The current study is focused on identification of ingredients and their formulation BKC using qualitative high performance thin layer chromatography (HPTLC) and 1H-nuclear magnetic resonance (1H-NMR) spectra fingerprint. Methods: Diagnostic HPTLC method is optimised to spot each ingredient in BKC. 1H-NMR spectroscopy of total methanolic extract in DMSO was also carried out to detect the presence of corresponding signals from ingredients. Results: HPTLC as well as 1H-NMR was found to be effectual in identifying ingredients of BKC. The results can be employed to identify BKC of different manufacturers of herbal markets. Conclusion: The test can also be employed in pharmacopoeias for quality control of multi-herb formulations used in Ayurveda.

KEYWORDS

Ayurvedic Formulary of India, chemical fingerprint, HPTLC, 1H-NMR, polyherbal, quality control.

Received: 04.10.2016 Accepted: 07.12.2016 DOI: 10.5530/jams.2016.1.10

Poly-herbal medicines (PM) which are combination of several herbs are popular in Indian Systems of Medicines like Ayurveda, Siddha and Unani. The synergistic therapeutic properties of these PMs are dependent on several phyto-constituents contributed from each of the ingredients. Owing to variability and complexity of chemical constituents there is need for development of methods for establishing quality for many of poly-herbal medicines used in traditional systems of medicine[3]. Chromatographic techniques are widely used for detecting plant drugs as it easy to run, reproduce, and requires a few equipments.[2,3] 1H-NMR spectroscopy is another important fingerprint technique employed for analysis of multi-constituent herbal extracts in recent times.[4] Bhūnimbādi Kvātha Cūrā (AFI, 2011)[5] is a poly-herbal medicine formulated from equal quantities of eight herbs viz. Bhūnimba (*Svertia chirata* Buch.Ham. - plant), Ativiśā (*Aconitum heterophyllum* Wall. ex. Royle - root), Lodhra (*Symlocos racemosa* Roxb. - stem bark), Mustaka (*Cyperus rotundus* Linn. - rhizome), Indrayava (*Holarrhena antidysenterica* Wall. - seed), Bālaka (*Coleus vettiveroides*. K. C. Jacob - root), Dhānya (Swertia chirata) - plant of *Coriandrum sativum* Linn. - Fruit) and Bilva (*Aegle marmelos* Corr. – fruit pulp). It is used in the treatment of asthma, cough, fever due to pitta dosa, bleeding disorder and fever.[5] In the present study an effort has been made to find out the suitability of qualitative HPTLC analysis and 1H-NMR spectroscopy fingerprinting to identify ingredients in the multi-herb formulation BKC.

MATERIALS AND METHODS

Collection and identification of plant samples

Dry raw samples required for the study were collected from the raw drug section of SDM Ayurveda pharmacy, Udupi and from authentic raw drug suppliers. The samples were authenticated using macro-microscopic examination, and voucher specimens (No. SDM/VGST/SMYSR/BKC/01-08) have been deposited in the crude drug museum of Pharmacognosy department of SDMCRGAS, Udupi, Karnataka.

TLC/HPTLC

Sample preparation

Ingredients- 5 g each of Bhūnimba, Ativiśā, Lodhra, Musthaka, Indrayava, Bālaka, Dhānya and Bilva were extracted exhaustively with methanol using Soxhlet apparatus. The filtrate was concentrated to dryness and 100 mg of dried residue was dissolved in 5 ml of methanol in a standard flask individually.

Formulation- 40 g of BKC was extracted exhaustively methanol using Soxhlet apparatus. The filtrate was concentrated to dryness and 100 mg of dried residue was dissolved in 5 ml of methanol in a standard flask.
Method
Chromatography profile for each ingredient with BKC was developed individually using separate mobile phase as follows: Bhūnimba - toluene: ethyl acetate: formic acid (7: 2: 0.2 \(\nu/\nu\)), Ativiśa - toluene: ethyl acetate: formic acid (7: 2: 0.1 \(\nu/\nu\)), Lodhra - chloroform: methanol (9.6:0.8 \(\nu/\nu\)), Musthaka - toluene: ethyl acetate: formic acid (9:1 \(\nu/\nu\)), Indrayava - n-hexane: diethyl ether (5.2 \(\nu/\nu\)), Bālaka - toluene: ethyl acetate (9: 1 \(\nu/\nu\)), Dhānyaka - toluene: ethyl acetate (9:3: 0.7 \(\nu/\nu\)), Bilva - toluene: ethyl acetate (8: 1 \(\nu/\nu\)).

Sample extracts, at two concentration levels were applied on aluminium plates precoated with silica gel 60 F 254 of 0.2 mm thickness (Merck, Germany) using CAMAG (Muttenz, Switzerland) Linomat 5 applicator. The plate was developed in CAMAG glass twin trough chamber previously saturated with respective mobile phase. The developed plate was visualized in CAMAG visualizing chamber under short UV and long UV and then scanned in CAMAG Scanner 4 at 254 and 366 nm. Derivation was done using vanillin- sulphuric acid (VS) spray followed heating at 105\(^{\circ}\)C till the spots appeared and scanned at 620 nm. \(R_t\) values and densitograms were recorded with the help of CAMAG WinCATS software.

\(^1\)H NMR spectroscopy

Sample preparation
The extraction of samples was as per method reported by Kim & Verpoorte with slight modification. Approximately 20 mg of all the samples were weighed into a 1.5 ml reaction tube and 1.5 ml of deuterated DMSO-D6 containing 0.05% TMS was added. One millilitre of the supernatant was added to a 5 mm diameter NMR spectroscopy tube and the samples were submitted for NMR analysis.

Operation parameters
\(^1\)H NMR spectra of the eight ingredients and the formulation BKC were obtained using Bruker Avance 500 MHz spectrophotometer (Bruker Analytik, Rheinstetten, Germany) equipped with a 5 mm cyroprobe head and operating at proton frequency of 500.13 MHz. The spectra were acquired with 256 scans, requiring approximately 12 min acquisition time. The acquisition parameters were: =0.16 Hz/point, pulse width (PW) 30° and relaxation delay = 1 s. FIDs were Fourier transformed with LB = 0.30 Hz. The spectra were corrected to the internal TMS peak. TOPSPIN version 1.3 software was used for acquisition and processing of the \(^1\)H NMR spectra which were manually corrected for phase and baseline distortions. The residual solvents signals for DMSO (2.65–2.45 ppm) and water (3.60–3.10 ppm) were excluded.

RESULTS AND DISCUSSION
HPTLC (Figure 1) and \(^1\)H-NMR fingerprinting (Figure 2) of the individual and compounded powder was developed in this study.

On densitometric scan at 366 nm, out of 10 peaks seen in BKC, 4 peaks were corresponding to Bhūnimba. After derivatisation followed by scan at 620 nm, out of 10 spots of BKC, 4 spots were from Ativiśa. At 620 nm post derivatisation, out of 9 peaks observed in BKC, 2 peaks have similar \(R_t\) as that of Lodhra. After derivatisation, scan at 620 nm showed 13 peaks in BKC, 4 peaks being at same \(R_t\) as that of Musthaka. After derivatisation, scan at 620 nm there were 9 peaks in BKC, in which 2 peaks were from Indrayava. At 620 nm after derivatisation, out of 11 peaks of BKC, 4 peaks obtained from Bālaka. After derivatisation, at 620 nm, 13 peaks in BKC, 5 peaks are detected from Dhānyaka. On densitometric scan at 254 nm out of 11 peaks of BKC, 5 peaks belonged to Bilva.

There were 7 peaks in BKC (5.4, 3.6, 3.5, 2.1, 1.6, 1.3, and 0.9 ppm), 11 in Ativiśa (5.3, 4.3, 3.9, 3.8, 3.7, 3.6, 3.5, 3.2, 3.1, 3.1 and 1.3 ppm), 15 in Bilva (8.6, 7.9, 7.6, 6.9, 5.3, 3.9, 3.8, 3.6, 3.5, 3.3, 2.3, 2.2, 2.0, 1.7 and 1.3 ppm), 12 in Dhānyaka (5.1, 5.0, 4.7, 3.4, 3.2, 3.1, 2.9, 2.3, 2.0, 1.8, 1.0 and 0.6 ppm), 11 in Bālaka (9.4, 7.7, 7.2, 6.9, 5.7, 4.7, 2.1, 1.7, 1.5, 1.3 and 1.0 ppm), 24 in Indrayava (7.5, 7.1, 7.0, 6.8, 6.6, 6.3, 5.4, 5.3, 4.3, 4.2, 4.0, 3.9, 3.8, 3.6, 3.5, 3.4, 3.3, 3.2, 2.8, 2.2, 2.1, 1.5, 1.3 and 1.0 ppm), 13 in Lodhra (5.2, 4.9, 4.3, 3.9, 3.8, 3.7, 3.6, 3.5, 3.2, 3.15, 3.08, 2.9 and 1.3 ppm), 14 in Musthaka (9.48, 7.0, 5.4, 5.0, 4.8, 4.4, 3.8, 3.7, 3.6, 3.5, 3.3, 3.2, 1.3 and 0.9 ppm) and 14 in Bhūnimba (7.6, 7.0, 4.9, 4.6, 4.3, 4.1, 4.0, 3.7, 3.6, 3.5, 3.3, 3.2, 1.3 and 0.9 ppm). The peak at 5.4 ppm was seen in both Indrayava and Musthaka. Peak at 3.6 and 3.5 were seen in all ingredients except Dhānyaka and Bālaka. Peak at 1.3 ppm were seen in all ingredients except Dāhnyaka. Peak at 0.9 ppm was seen in Musthaka and Bhūnimba. Peak at 3.6, 3.5 and 1.3 ppm were the peaks of Ativiśa seen in BKC, peaks at 5.3, 4.3, 3.9, 3.8, 3.7, 3.2 and 3.1 were distinctive for Ativiśa. Peak at 3.6, 3.5 and 1.3 ppm were the peaks of Bhūnimba seen in BKC, peaks at 8.6, 7.9, 7.6, 6.9, 5.3, 3.9, 3.8, 3.3, 2.3, 2.2, 2.0 and 1.7 were distinctive for Bilva. There was no distinct peak of Bhūnimba seen in BKC. Peak at 2.1 and 1.3 ppm were the peaks of Bālaka seen in BKC, peaks at 9.4, 7.7, 7.2, 6.9, 5.7, 4.7, 1.7, 1.5 and 1.0 ppm were distinctive for Bālaka. Peak at 5.4, 3.6, 3.5, 2.1 and 1.3 ppm were the peaks of Indrayava seen in BKC, peaks at 7.5, 7.1, 7.0, 6.8, 6.6, 6.3, 5.3, 4.3, 4.2, 4.0, 3.9, 3.8, 3.4, 3.3, 3.2, 2.8, 2.2, 2.1, 1.5 and 1.0 were distinctive for Indrayava. Peak at 3.6, 3.5 and 1.3 ppm were the peaks of Lodhra seen in BKC, peaks at 5.2, 4.9, 4.3, 3.9, 3.8, 3.7, 3.2, 3.15, 3.08 and 2.9 were distinctive for Lodhra. Peak at 5.4, 3.6, 3.5, 1.3 and 0.9 ppm were the peaks of Musthaka seen in BKC, peaks at 9.48, 7.0, 5.0, 4.8, 4.4, 3.8, 3.7, 3.6, 3.5, 3.3, 3.2 and 3.2 were distinctive for Musthaka. Peak at 3.6, 3.5, 1.3 and 0.9 ppm were the peaks of Bhūnimba seen in BKC, peaks at 7.6, 7.0, 4.9, 4.6, 4.3, 4.1, 4.0, 3.7, 3.3 and 3.2 were distinctive for Bhūnimba (Table 1). There are several PMs mentioned in the classics of Ayurveda, Siddha and Unani for different disorders. During routine quality control checking of PMs ingredients and the PM are fingerprinted using HPLTC using a single solvent system as reported in a earlier study on this PM. Mapping of each ingredient along with PM in a suitable solvent system will help more in spotting the ingredients more accurately. Analysis of presence and absence of ingredients in a PM is a challenging work though \(^1\)H-NMR has been in use for detection of adulteration and substitution in herbal ingredients.
Table 1. 1H NMR spectroscopy of in

<table>
<thead>
<tr>
<th></th>
<th>BKC</th>
<th>Ativiṣā</th>
<th>Bilva</th>
<th>Dhānyaka</th>
<th>Hrīvera</th>
<th>Indrayava</th>
<th>Lodhra</th>
<th>Musta</th>
<th>Bhūnimba</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>9.4</td>
<td>9.48</td>
<td>8.6</td>
<td>7.9</td>
<td>7.7</td>
<td>7.6</td>
<td>7.5</td>
<td>7.2</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6.9</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.8</td>
<td>6.6</td>
<td>6.3</td>
<td>5.7</td>
<td>5.4</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td></td>
<td>5.1</td>
<td>5</td>
<td>4.9</td>
<td>4.8</td>
<td>4.7</td>
<td>4.7</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.2</td>
<td>4.1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>3.9</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td></td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.5</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.08</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>2.3</td>
</tr>
<tr>
<td>2.2</td>
</tr>
<tr>
<td>2.1</td>
</tr>
<tr>
<td>1.7</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>1.3</td>
</tr>
<tr>
<td>1.3</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>0.6</td>
</tr>
</tbody>
</table>
Figure 1. HPTLC photo documentation and 3D display of Bhūnimbadi Kwatha Churna and its Ingredients

Indrayava

Bālaka

Dhānyaka

Bilva
Figure 2. ¹H NMR spectrum of Bhūnimbādi Kwatha Churna and its Ingredients

Bhūnimba

Ativiṣā

Lodhra

Musthaka
CONCLUSION
The data obtained in the current study with multivariate analysis would help in drawing a novel standardisation platform for multiherb formulations used in traditional systems of medicine.

ACKNOWLEDGEMENT
This work was supported by the scheme of Seed Money for Young Scientists for Research (SMYSR) Project (No. VGST/P-3/SMYSR/GRD-291/2013-14 dated January 28, 2013) by Vision Group on Science and Technology (VGST), Govt. of Karnataka. Heartfelt thanks to Dr. S. Ananth Raj, Consultant, VGST, for the kind support. Authors are also grateful to Dr. D. Veerendra Heggade, President, SDME Society, Ujjire for the support. Guidance from Dr. R. Muralidhar, Senior Manager, SDM Ayurveda Pharmacy is duly acknowledged.
CONFLICTS OF INTEREST
Nil

REFERENCE

ABOUT FIRST/CORRESPONDING AUTHOR
Dr. KN Sunil Kumar PhD is currently working as Research Officer in Pharmacognosy at Siddha Central Research Institute, Anna Hospital Campus, Arumbakkam, Chennai. He worked as Senior Research Officer in Pharmacognosy and Phytochemistry at SDM Ayurveda and Allied Sciences, Udupi, India 574118. He obtained Senior Research Fellowship from ICMR, Young Scientist Award, VGST, Govt. Of Karnataka and Dr. PD Sethi award for 5 best HPTLC papers. He is investigating projects on standardization of Ayurvedic formulation from agencie like UGC, VGST, RGUHS and PCIM (AYUSH). He is Author of 69 research papers and 55 monographs. He is also serving as Chief editor Journal of Ayurvedic and Herbal medicine and subject editor Pharmacognosy Ayu-An international Quarterly Journal of Research in Ayurveda.

GRAPHICAL ABSTRACT

©Journal of Ayurveda Medical Sciences – Herbal Research Guidance and Solutions' (HRGS) Ayurveda Journal

71