Pharmacognostical and Phytochemical Characterisation of Cork and Seed of *Tamarindus indica* Linn.

Thejaswi Ishwar Naik, Shrikanth Padigar, Tantrady Shridhara Bairy, Suchithra Prabhu, Sunil Kumar Koppara Narayana

SDM Ayurveda Hospital, Department of PG Studies in Dravyaguna, SDM College of Ayurveda, SDM. Centre for Research in Ayurveda and Allied Sciences, Kuthpady, Udupi 574118, Department of Pharmacognosy, Siddha Central Research Institute (CCRS), Anna Hospital Campus, Arumbakkam, Chennai 600106, India.

ABSTRACT

Introduction: *Chinch*a (*Tamarindus indica* Linn.) is a tropical tree which is extensively used in Ayurveda and folk practice across South Canara for various ailments such as indigestion, as cardiac tonic, vermifuge, burning sensation, diarrhoea and diabetes. The cork and seed of *T. indica* has been successfully used by the folklore practitioners of Udupi District in the treatment of various types of wounds. As systematic authentication of herbal raw drug is becoming increasingly important to produce standardized herbal products this study was planned. **Methods:** Macroscopic features and powder microscopy of cork and seed of *T. indica* are documented along with their photographs. Phytochemical test was carried out in order to figure out the constituents present in the seed and cork. HPTLC finger print profile of ethanol extract of *T. indica* cork and seed was also been carried out. **Results:** Powder microscopy showed the presence of calcium oxalate crystals, group of sclerieds, Crystal fibres in cork and fragments of cotyledone with fixed oil, Parenchymal cells in seeds. Phytochemical screening showed the presence of coumarins, flavanoids, saponins, tannin, alkaloid, steroid and carbohydrate. **Conclusion:** These diagnostic features can be utilized as a fingerprint for the identification and differentiation of their substitute and adulterants of the plant.

KEYWORDS Chinch*a, coumarins, HPTLC finger printing, macro-microscopic atlas.

ARTICLE HISTORY Received 22.11.2017 Accepted 16.04.2018

CORRESPONDENCE Dr KN Sunil Kumar, Research Officer (Pharmacognosy), Siddha Central Research Institute (Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India), Arumbakkam, Chennai 600106, India. Email: kn.sunil@gov.in

DOI 10.5530/jams.2018.3.7

I. INTRODUCTION

Numerous drugs have entered the international pharmacopeia via the study of ethnopharmacology and traditional medicine. Ayurveda is one such great living traditional system which has an important role in bioprospacting of new medicines and also giving encouragement to ethno pharmacological research. Several recent surveys have shown that using ethno pharmacology as a basis of selecting species for screening results in a significant increase in the hit rate for the discovery of novel active compounds compared with random collection of samples[1]. As Ayurveda mentions that the plants available in vicinity are much beneficial in the management of diseases[2]. The usage of drugs which are commonly available, cost-effective and efficient should be encouraged rather going for the expensive drugs. This will also reduce the burden over the routinely prescribed classical drugs thus preventing them from the verge of extinction and can be progressively used for longer time.

T. indica Linn of Caesalpiniaceae subfamily is commonly identified and known as Chinch*a in Ayurveda system of medicine[3]. Its fruit, tender leaves and flowers are used extensively in culinary and medicinal preparations. It’s a large wide spreading tree 12 to 18 m high. The trunk with dark rough bark has deep cracks; leaves 5 to 12.5 long, leaflets sub sessile, 10 to 20 pairs; flowers in lax few flowered racemes, petals 3, yellowish with pink stripes; pods pendulous, 7.5 to 20 cm long, slightly curved, sub compressed; seeds smooth, reddish brown, enveloped by tough leathery membrane[4]. It has scientifically reported for several medicinal properties viz. anti-oxidant[5], anti-inflammatory, analgesic activity[6] and anti-arthritic activity[7] of seed, anti-oxidant activity[8], antibacterial activity[9], anti-microbial activity[10] of fruit, antibacterial[11], hepatoprotective effect[12] of flowers, anti-microbial activity[13], hyperglycaemic activity[14], anti-microbial activity[15] of bark. The cork and seed of *T. indica* has been successfully used by the folklore practitioners of Udupi district in the treatment of various types of chronic wounds. Considering the traditional claim and reported activities pharmacognostical study,
analytical study and HPTLC fingerprinting of cork and seed of T. indica was undertaken by making use of various parameters to standardize & authenticate in accordance to international standards and quality control of Ayurvedic drug.

2. MATERIALS AND METHODS

2.1 Collection and authentication
The tree T. indica was authenticated botanically by referring flora of Udupi[15]. Fresh seed and cork is collected from the well mature tree from Udupi district of Karnataka, India. The sample is deposited at SDM centre for Research in Ayurveda and Allied Sciences, Udupi (Voucher specimen number 647/15072701-02). The Cork and Seed of T. indica dried in shade powdered and sift through sieve number 40; the powder was stored in glass vials until microscopic evaluation.

2.2 Macroscopy
The external features of the test samples were documented using Canon IXUS digital camera. Macroscopic characters like size, shape, texture and colour were noted in detail. The macroscopic features were compared to local flora for authentication.

2.3 Powder microscopy
A pinch of powder was warmed with drops of chloral hydrate on a microscopic slide and mounted in glycerine. Slides observed under microscope and diagnostic characters were observed and photographed using Zeiss AXIO trinocular microscope attached with Zeiss AxioCam camera under bright field light. Magnifications of the figures are indicated by the scale bars.

2.4 Preliminary phytochemical analysis
Tests to find the presence of alkaloid, steroid, carbohydrate, tannin, flavonoids, saponins, terpenoids, coumarins, phenol, carboxylic acid, amino acids, resins and quinine were done as per standard methodology[16].

2.5 HPTLC fingerprinting
One gram of powdered samples were dissolved in 10 ml ethanol and kept for cold percolation for 24h and filtered. 8 and 12µl of the above samples of were applied on a pre-coated silica gel F254 on aluminum plates to a band width of 7 mm using Linomat 5 TLC applicator. The plate was developed in toluene: ethyl acetate (9.0:1.0). The developed plates were visualized in UV 254, 366nm and then derivatised with vanillin sulphuric acid reagent and scanned under UV 254, 366 nm following derivatisation. Rf, colour of the spots and densitometric scan were recorded[17].

3. RESULTS AND DISCUSSION

3.1 Macroscopy
3.1.1 Cork
Cork occurs as pieces of size of about 5 to 10 cm long and 3 to 5 cm wide, having dark brown colour, light in weight, up to 5mm thickness, odour not characteristic and taste astringent, fracture short, fracture surface is splintery, Outer surface rough with tubercles, inner surface smoother than upper (Figure 1.1).

3.1.2 Seed
The seed is flattened, more or less rounded, sub-rectangular, oval to oblong with raised margin encircling the central flattened portion (oriole) or large patch, which is more reddish brown to brown in colour, strongly lustrous and exhibit pale yellowish lines running parallel to each and occasionally getting connected in the central region. Size 1 to 1.5 cm in length 0.5 to 0.8 cm in width and 0.2 to 0.3 cm in thickness, the edged marginal portion encircling the seed is broad, dull brown, minutely pitted and exhibit centrally located narrow longitudinal groove running throughout the margin, a pale yellowish elevated spot lying in the narrow groove at the basal region of the seed is the hilum, micropyle being located at its opposite end, testa is thick and brittle and easily detachable by roasting or by boiling the seeds in water exposing the inner whitish bulky cotyledon; taste is slightly astringent, having specific characteristic odour (Figure 1.2 and 1.3).

3.2 Powder Microscopy
3.2.1 Cork
Brownish coloured coarse powder with astringent taste and without any characteristic odour. The cork powder exhibits the following inclusions when examined under the microscope. Crystal fibres and Calcium oxalate crystals observed. Pitted parenchyma cells were observed in the powder, the parenchyma cells are wide, short, vertically oblong cells, often found in bundles. Crystal strands are very common. They are scattered individually or in continuous vertical strand. Group of sclereids, stone cells and fibro sclereid are also observed (Figure 2).

3.2.2 Seed
Pinkish pale brown coloured coarse powder with astringent taste and with characteristic odour. The diagnostic characters of the powder are fragments of exotesta (palisade cells) in surface view showing circular thick walled cells with brown pigment; transversely cut fragments of exotesta showing palisade cells with bulbous swellings and warty line crossing across, thick, irregular, sinuous walled cells of hypodermis of exotesta with brown colour; isolated or groups of irregular cells of mesotesta with brown pigment; isolated or groups of cells of various sizes and shapes from endotesta; groups of thin walled fibrous cells, non-pitted sclereids from the hilum; fragments of mesophyll cells with characteristically bulbous thickened wall, embedded with protein and groups of annular vessels; fragments of plumule and fragments of cotyledone with fixed oil. Parenchymal cells scattered as such throughout; fragment of lower epidermis of cotyledon in surface view embedded with aleurone grains (Figure 3).

3.3 Preliminary phytochemical tests
Phytochemicals are primary and secondary compounds which are essential to know the basic constituents present in the drug. Alcoholic extract of T. indica cork and seed were subjected to preliminary phytochemical study, according to standard protocol. The tests were conducted to detect the presence of alkaloids, steroids, Carbohydrate, tannins, flavonoids, saponins, terpenoids, coumarins, phenol, carboxylic acid, amino acids, resins and quinones (Table 1).

<table>
<thead>
<tr>
<th>Test</th>
<th>Seed</th>
<th>Cork</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloid</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Steroid</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Tannin</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Flavanoids</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Terpenoid</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Coumarins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenol</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amino acids</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Resins</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quinone</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
3.4 High Performance Thin Layer Chromatography (HPTLC)

HPTLC finger print profile of ethanolic extract of cork and seed of *T. indica* were recorded. TLC photo documentation revealed no spots under 254 nm, under UV 366 nm there was no spots in seed extract of *T. indica* and 1 spot was evident with *R*$_f$ 0.48 (F aqua. blue) was observed in cork extract of *T. indica*, under 620 nm post derivatisation with Vanillin sulphuric acid spraying reagent there were 3 spots in Seed extract and 4 spots in cork extract respectively (Table 2 and Figure 4). Densitometric scan at 254 nm, *T. indica* seed revealed 3 peaks corresponding to 3 different constituents in the ethanol extract, with *R*$_f$ 0.02(79.01%), 0.66 (14.10%) and 0.78 (6.89%) were the major peaks. *T. indica* cork revealed 3 peaks corresponding to 3 different constituents in the ethanol extract, with corresponding *R*$_f$ of 0.02(82.26%), 0.67 (10.93%) and 0.79 (6.81%) were the major peaks (Figure 5). Densitometric scan at 366 nm, *T. indica* seed revealed 3 peaks corresponding to 3 different constituents in the ethanol extract, with *R*$_f$0.04(11.09%), 0.54 (68.19%) and 0.65 (20.72%) were the major peaks. *T. indica* cork revealed one peak corresponding to one constituent in the ethanol extract, with *R* 0.56 (100.00%) was the only major peak (Figure 6).

| Table 2. *R*$_f$ values of sample of *Tamarindus indica* cork and seed |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Short UV | Long UV | Post derivatisation |
| Cork | Seed | Cork | Seed | Cork | Seed |
| - | - | - | - | 0.10 (L. pink) | - |
| - | - | - | - | 0.19 (L. purple)| - |
| - | - | 0.48 (F blue) | - | - | - |
| - | - | 0.38 (L. purple)| 0.38 (D. purple)| - |
| - | - | 0.55 (D. purple)| - | - |
| - | - | 0.58 (L. purple)| 0.63 (D. purple)| - |

L - light; *D* - dark; *F* - fluoresce
2.2 Crystal fibre

2.3 Prismatic crystals

2.7 Stone cells

2.8 Sclereids

Figure 3. Powder microscopy of *Tamarindus indica* Linn. Seed powder

3.1 Parenchyma cells

3.5 Transversely cut exotesta

3.6 Testa in surface view

3.2 Fragments of cotyledon

3.7 Exotesta with brown pigment

3.8 Cells from endotesta

3.3 Parenchyma cells

3.4 Cells with orange contents

3.9 Cotyledon in surface view
Figure 4. HPTLC photo documentation of ethanol extract of *Tamarindus indica* Linn. seed and cork

4.1 Under short UV
4.2 Under long UV
4.3 Post derivatisation

Track 1: Seed - 8µl **Track 2:** Cork - 8µl
Track 3: Seed - 12µl **Track 4:** Cork - 12µl
Solvent system - Toluene: Ethyl acetate (9.0: 1.0)

Figure 5. Densitometric scan of *Tamarindus indica* at 254 nm (At 12 µl)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Start Position</th>
<th>Start Height</th>
<th>Max Position</th>
<th>Max Height</th>
<th>Max %</th>
<th>End Position</th>
<th>End Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01 Rf</td>
<td>156.8 AU</td>
<td>0.02 Rf</td>
<td>207.1 AU</td>
<td>79.01 %</td>
<td>0.04 Rf</td>
<td>132.9 AU</td>
<td>32.48 %</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.60 Rf</td>
<td>0.5 AU</td>
<td>0.65 Rf</td>
<td>36.9 AU</td>
<td>14.10 %</td>
<td>0.75 Rf</td>
<td>20.39 AU</td>
<td>49.64 %</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.75 Rf</td>
<td>0.4 AU</td>
<td>0.78 Rf</td>
<td>1.4 AU</td>
<td>6.85 %</td>
<td>0.83 Rf</td>
<td>0.54 AU</td>
<td>17.70 %</td>
<td></td>
</tr>
</tbody>
</table>

Seed

<table>
<thead>
<tr>
<th>Peak</th>
<th>Start Position</th>
<th>Start Height</th>
<th>Max Position</th>
<th>Max Height</th>
<th>Max %</th>
<th>End Position</th>
<th>End Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01 Rf</td>
<td>0.4 AU</td>
<td>0.02 Rf</td>
<td>233.7 AU</td>
<td>82.28 %</td>
<td>0.03 Rf</td>
<td>0.0 A U</td>
<td>1944.8 AU</td>
<td>31.94 %</td>
</tr>
<tr>
<td>2</td>
<td>0.60 Rf</td>
<td>0.3 AU</td>
<td>0.67 Rf</td>
<td>31.0 AU</td>
<td>10.83 %</td>
<td>0.72 Rf</td>
<td>10.1 AU</td>
<td>1365.9 AU</td>
<td>41.61 %</td>
</tr>
<tr>
<td>3</td>
<td>0.76 Rf</td>
<td>7.8 AU</td>
<td>0.79 Rf</td>
<td>19.3 AU</td>
<td>6.81 %</td>
<td>0.85 Rf</td>
<td>8.8 AU</td>
<td>888.4 AU</td>
<td>26.45 %</td>
</tr>
</tbody>
</table>

Cork
Figure 6. Densitometric scan of Tamarindus indica at 366nm (At 12 µl)

4. CONCLUSION

The macroscopic features recorded in this study can be used for the preliminary identification of the part of the plant. Presence of calcium oxalate crystals, group of sclereids are marked features of powder microscopy. The preliminary phytochemical study indicates the presence of coumarins in cork extract and tannin, flavonoids, saponins, terpenoid, and coumarins in seed extract which is in support of wound healing activity. HPTLC photo documentation revealed presence of phyto-constituents with different Rf value. Further Scientific evaluation at molecular level, marker compounds and pharmacological confirmation required.

Acknowledgement

Authors are grateful to revered president Dr. D. Veerendra Heggade and Dr. B. Yashovarma, Secretary SDM Educational society for constant support. Authors express their sincere gratitude to Dr. B Ravishankar, Director, SDM Centre of research in Ayurveda and Allied sciences, Udupi, for constant encouragement and facilities providing during research work.

Source of support

Nil

Conflict of interest

Authors declare no conflict of Interest

Contributors

Dr Thejaswi and Mrs Suchithra performed all experimental work in phytochemical parameter, HPTLC and any other laboratory work. Dr KN Sunil Kumar, Dr Shrikant P and Dr T Shridhara Bairy contributed to planning and execution of research work, literature survey for article, drafting and finalization of article as per the format.

Reference